SEARCHING FOR THE HIGGS BOSON

David Rainwater
University of Rochester

TASI 2006 University of Colorado, Boulder June 12, 2006

- Collider searches for the Higgs
- Is it the SM Higgs boson?
- SUSY & other BSM Higgs sectors

Some recommended references

The Anatomy of electro-weak symmetry breaking. I/II: [SM & MSSM] Abdelhak Djouadi, hep-ph/0503172 and 0503173.

QCD effects in Higgs physics, [Higgs formulae] Michael Spira, Fortsch.Phys.46:203-284,1998, hep-ph/9705337.

Higgs statistics for pedestrians, [what happened at LEP] Eilam Gross & Amit Klier, hep-ex/0211058.

CMS TDR (Technical Design Report), Higgs chapter, Due out June 20, 2006.

Higgs boson searches at hadron colliders, Volker Buscher & Karl Jakobs, Int.J.Mod.Phys.A20:2523-2602,2005, hep-ph/0504099.

Prospects for the search for a standard model Higgs boson in ATLAS using vector boson fusion, S. Asai et al., Eur.Phys.J.C32S2:19-54,2004, hep-ph/0402254.

SM Higgs Reminder (Sally Dawson's lectures)

The SM Higgs sector is the simplest, most economical weakly-coupled explanation for EWSB and fermion mass generation.

- unitarizes $VV \rightarrow VV$ scattering,
- unitarizes $f \bar{f} o VV$ scattering
- gives masses to W, Z, and fermions in a gauge-invariant, renormalizeable way

But it does come with some caveats:

- ignores the flavor problem
- no explanation of neutrino masses
- radiative stability problem

That said, SM Higgs is a suitable starting point for *phenomenology*:

- → the study of physical phenomena associated with a theory
- → the connection between theory and experiment

Purpose of these lectures:

- 1. show how to look for a Higgs candidate at colliders
- 2. show how to study a Higgs candidate confirm a theory
- 3. explain some Higgs sectors beyond the SM

The SM Higgs $SU(2)_L$ doublet has several parameters:

- · 1 "gauge" parameter, v, measured via M_W , G_F , etc.
- · 9 Yukawa couplings (fermion mass parameters; ignore ν 's)
- \cdot 1 free parameter, M_H

To study these parmeters, must produce Higgs bosons at colliders:

LEP, Tevatron, LHC, SLHC, ILC, CLIC, VLHC, ...

LEP already ran

Tevatron is running

LHC will run in ~ 1 year

what comes next depends on what we find

So how is the SM Higgs boson produced in collision?

ightarrow recall the Higgs couples to SM particles $\propto m$

LEP HIGGS SEARCHES

(a brief history)

 $M_H \gtrsim 3$ GeV from hadron decays before LEP (ca. 1990)

What about $e^+e^- \to H$ direct production?

 $M_H \gtrsim 3$ GeV from hadron decays before LEP (ca. 1990)

What about $e^+e^- \rightarrow H$ direct production?

HA! Would take about 4 years to see 1 event at LEP-II

 $(m_e$ is just far too small to couple usefully)

 $M_H \gtrsim 3$ GeV from hadron decays before LEP (ca. 1990)

What about $e^+e^- \rightarrow H$ direct production?

HA! Would take about 4 years to see 1 event at LEP-II $(m_e \text{ is just far too small to couple usefully})$

How it's really produced: mostly $e^+e^- \rightarrow Z^* \rightarrow ZH$

(assume here $M_H \lesssim 150$ GeV or so, so $H \to f \bar{f}$ dominates)

 \triangleright at an e^+e^- collider, can use nearly all Z decays

▶ but then how does the Higgs decay?

${\cal H}$ preferentially decays to the heaviest SM pair kinematically allowed

 \blacktriangleright at low M_H , this is mostly $b\bar{b}$ and $\tau^+\tau^-$

A bit on Higgs partial widths...

1. decays to fermions:

$$\boxed{\Gamma_{f\bar{f}} \ = \ \frac{N_c G_F m_f^2 M_H}{4\sqrt{2}\pi} \beta^3} \quad \text{w/} \quad \beta = \sqrt{1 - \frac{4m_f^2}{M_H^2}}$$

- \cdot use $m_f(M_H)$ for quarks
- \cdot QCD corrections for $\Gamma_{q\bar{q}}$ significant
- \rightarrow notice: *linear* in M_H
- \rightarrow one factor β from matrix element, two factors from phase space

2. decays to gauge bosons

$$\Gamma_{VV} \; = \; \frac{G_F M_H^3}{8\sqrt{2}\pi} \; \delta_V \beta \bigg(1 - x_W + \frac{3}{4} x_W^2 \bigg) \qquad \text{w/} \quad \begin{cases} \delta_{W,Z} \; = \; 2, 1 \\ \beta \; = \; \sqrt{1 - x_W} \\ x_W \; = \; \frac{4M_W^2}{M_H^2} \end{cases}$$

- \rightarrow notice: *cubic* in M_H
- \rightarrow one factor β from phase space, other part from matrix element
- partial widths to fermions & bosons very different; bosons "win"

A bit on Higgs partial widths...

3. decays to gluons: but gluons are massless!

Loop-induced decay:

$$H$$
 ---- t, b

$$\left| \Gamma_{gg} = \frac{\alpha_s^2 G_F M_H^3}{16\sqrt{2}\pi^3} \right| \sum_i \tau_i \left[1 + (1 - \tau_i) f(\tau_i) \right] \right|^2$$

$$\text{w/} \quad \tau_i \, = \, \frac{4m_f^2}{M_H^2} \text{ and } f(\tau) \, = \, \begin{cases} \left[\sin^{-1} \sqrt{1/\tau} \right]^2 & \tau \geq 1 \\ -\frac{1}{4} \left[\ln \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} - i\pi \right]^2 & \tau < 1 \end{cases}$$

- · use $m_f(M_H)$ for quarks; t completely dominates
- QCD corrections significant
- \cdot *cubic* in M_H
- \cdot similar form for $H \to \gamma \gamma$, but W loop included

A brief word on statistics...

In any experiment, event counts are quantum rolls of the dice they follow a Gaussian distribution about the true mean.

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

The statistical uncertainty in the rate then goes as \sqrt{N} , the # of events. This is "1 sigma" of uncertainty: 68.2% of the experiments we conduct will obtain N within $\sigma \approx \pm \sqrt{N}$ about $\mu = N_{\rm true}$.

To discover a signal above some known background, we require 5σ : a 0.0006% chance that the signal is only a statistical fluctuation.

LEP-II searched in multiple channels:

$$b\bar{b}jj$$
, $b\bar{b}\ell^+\ell^-$, $b\bar{b}\nu\bar{\nu}$, $\tau^+\tau^-jj$, $jjjj$, ...

${\cal Z}$ branching ratios:

- $\rightarrow \ell^+\ell^-$ 3.3% (each of e,μ,τ)
- $\rightarrow b\bar{b}$ 15%
- $\rightarrow \nu \bar{\nu}$ 20% (invisible)
- $\rightarrow jj$ 55% (everything else)

LEP-II searched in multiple channels:

$$b\bar{b}jj$$
, $b\bar{b}\ell^+\ell^-$, $b\bar{b}\nu\bar{\nu}$, $\tau^+\tau^-jj$, $jjjj$, ...

Z branching ratios:

- $\rightarrow \ell^+\ell^-$ 3.3% (each of e,μ,τ)
- $\rightarrow b\bar{b}$ 15%
- $\rightarrow \nu \bar{\nu}$ 20% (invisible)
- $\rightarrow jj$ 55% (everything else)

And saw nothing up to the machine kinematic limit ...

...using a 2σ statistical limit.

Or did it? Interesting \aleph event: $Z \to q\bar{q}, h \to bb$

Made on 29-Aug-2000 17:06:54 by DREVERMANN with DALL_F1. Filename: DC054698_004881_000829_1706.PS_H_CAND

Do you play the "1 event" game?

TEVATRON HIGGS SEARCHES

(ongoing)

Higgs searches are much tougher at a hadron collider!

Reason: signal is EW (small), but backgrounds are QCD (large).

A heavy top quark turns out to be a real pain...

"Today's edge-of-your-seat search is tomorrow's exciting discovery is next week's annoying background."

 $p\bar{p}$ collisions are different from e^+e^- , so ask again:

▶ how do we produce the Higgs at a hadron collider?

Higgs searches are much tougher at a hadron collider!

Reason: signal is EW (small), but backgrounds are QCD (large).

A heavy top quark turns out to be a real pain...

"Today's edge-of-your-seat search is tomorrow's exciting discovery is next week's annoying background."

 $p\bar{p}$ collisions are different from e^+e^- , so ask again:

▶ how do we produce the Higgs at a hadron collider?

Which process is largest? The answer might surprise...

What channel works best at a hadron collider isn't so obvious...

Tevatron uses multiple channels:

- ullet if H o b ar b dominant, then
 - $W^{\pm}H \to \ell^{\pm}\nu b\bar{b}$
 - $\cdot ZH \rightarrow \ell^+\ell^-b\bar{b}$
 - $WH, ZH \rightarrow jjb\bar{b}$
 - $\cdot ZH \rightarrow \nu \bar{\nu} b \bar{b}$
- \bullet if $H \to W^+W^-$ dominant, then
 - $\cdot gg \to H \to W^+W^-$ (dileptons)
 - $W^{\pm}H \to W^{\pm}W^{+}W^{-}$ (2 ℓ ,3 ℓ)

Important point: requiring leptons in the final state gets rid of many QCD backgrounds, but not top quark pairs!

Note that finite jet pair mass resolution $\pm 15-20$ GeV seriously complicates a search for a narrow resonance.

→ Run I very far from discovery level, but Run II is far superior

For "light" $H, ZH \to \nu \bar{\nu} b \bar{b}$ and $WH \to \ell \nu b \bar{b}$ are the cleanest:

Higgs signal is a very tiny addition to a steeply falling bkg – how well do we know the bkg shape? (Hint: it's QCD...)

Example: CDF Run II $ZH \to u \bar{\nu} b \bar{b}$ candidate event

Two b-tagged jets

Jet₁
$$E_T$$
= 100.3 GeV
Jet₂ E_T = 54.7 GeV

$$m_{jj}$$
= 82 GeV

Missing E_T=145 GeV

Could be ZZ

→ not so straightforward to say what any given event is

For "heavier" Higgs, $gg \to H \to W^+W^-$ is best chance:

 \cdot both W's decay to $\ell \nu$ to get rid of QCD bkg

 $p\bar{p} \to W^+W^-$ bkg is largest, about 100x SM Higgs signal

Use Dittmar-Dreiner angular lepton correlation to reduce bkg:

 $W_T^+W_T^-$ component:

$$W_T^+ \to \ell^+ \nu_\ell \propto (1 + \cos \theta_\ell)^2$$

$$W_T^- \to \ell^- \bar{\nu}_\ell \propto (1 - \cos \theta_\ell)^2$$

 W^\pm spins anti-correlated $\dot{}$ emitted in same direction

 $W_L^+W_L^-$ component:

$$|M|^2 \propto (\ell^- \cdot \nu) (\ell^+ \cdot \bar{\nu}) \ o$$
 same result

 \blacktriangleright $\ell^+\ell^-$ emitted preferentially together

$$\bar{\nu}_l \cdots \qquad \stackrel{l^-}{W^-} \stackrel{H}{W^-} \stackrel{W^+}{V_l} \cdots \qquad \stackrel{l^+}{V_l}$$

Tev2 $gg \to H \to W^+W^- \to \ell^+\ell^-p_T$ lepton angular correlation:

→ a long way to go, but could rule out some BSM physics soon

Summary of Tevatron Higgs study predictions per 1 fb $^{-1}$: (uses advanced neural net (NN)-improved analyses)

		Higgs Mass (GeV/ c^2)				
Channel	Rate	90	100	110	120	130
$\ell u b ar{b}$ (NN)	$S \\ B \\ S/\sqrt{B}$	8.7 28 1.6	9.0 39 1.4	4.8 19 1.1	4.4 26 0.9	3.7 46 0.5
$ uar{ u}bar{b}$ (NN)	S B S/\sqrt{B}	12 123 1.1	8 70 1.0	6.3 55 0.8	4.7 45 0.7	3.9 47 0.6
$\ell^+\ell^-bar{b}$ (NN)	$S \\ B \\ S/\sqrt{B}$	1.2 2.9 0.7	0.9 1.9 0.7	0.8 2.3 0.5	0.8 2.8 0.5	0.6 1.9 0.4
$qar{q}bar{b}$ (SHW)	$S \\ B \\ S/\sqrt{B}$	8.1 6800 0.10	5.6 3600 0.09	3.5 2800 0.07	2.5 2300 0.05	1.3 2000 0.03

Contemplate: 5 fb $^{-1}$ for $M_H=120$ GeV in the best channel would be $S=23,~B=225,~S/\sqrt{B}=1.6\sigma$

► Tev2 Higgs search must combine several extremely weak channels

Tevatron Run II search ultimately depends on statistical combination of multiple very weak channels: damned by low luminosity!

SM HIGGS AT LHC

(starts in 1 year!)

The LHC is really a gluon collider!

Compared to Tevatron, QCD/EW xsec ratio is much larger – except for H.

However, while $gg \to H$ rises QCD-like, the VH channels become relatively quite small.

Note: significant QCD corrections to inclusive Higgs production

As cross sections:

ightarrow NNLO+NNLL corrections important; gg
ightarrow H understood well now

What Higgs channels are best as a function of M_H ?

Not straightforward: WBF viable @ LHC (unlike Tev2), and need to know:

- (a) $\sigma \cdot BR$
- (b) S v. B and uncertainty on (especially) B
- (c) detector capabilities

What Higgs channels are best as a function of M_H ?

Not straightforward: WBF viable @ LHC (unlike Tev2), and need to know:

- (a) $\sigma \cdot BR$
- (b) S v. B and uncertainty on (especially) B
- (c) detector capabilities

Some surprises waiting...

- · WBF far better than GF (inclusive) Higgs production
- $\cdot t \bar{t} H$ is a tragedy, not a victory
- · QCD comes back to bite us
- · we know what to do, but aren't prepared to do it
- → the old ATLAS TDR is incredibly out of date (CMS TDR out this summer)

In spite of these dire-sounding warnings,

LHC is a far better Higgs factory than we had imagined (and just keeps getting better)

The story of $t \bar{t} H$ at LHC

Idea: t-H coupling is "large", and $t\bar{t}H$ signal is highly complex \cdot : unique, should be very little background.

- \cdot need ≥ 1 lepton to trigger on events
- original detector studies looked glorious
- ▶ problem: original studies did not think about QCD carefully!
 - $o t \bar{t} b b$, $t \bar{t} j j$ in the soft/collinear approximation is no good

 $\triangleright \ S/B$ now about 1/6 for $M_H=120~{
m GeV}$

shape change now very marginal

And in the (lack of) shape lies the sleeping dragon...

There are two types of analysis error in measuring backgrounds:

- 1. statistical error on sideband measurement
- 2. systematic error on shape extrapolation to signal region

Significance formula changes:
$$\frac{S}{\sqrt{B}} \rightarrow \frac{S}{\sqrt{B(1+B\triangle^2)}}$$

where \triangle is the shape uncertainty (a kind of normalization uncer.)

If S/B is fixed as luminosity \uparrow , then signif. saturates: $\sigma_{\infty} = \frac{S/B}{\triangle_{\mathrm{shape}}}$

$$\frac{\triangle=10\% \text{ for } t\bar{t}H, H \to b\bar{b},}{\text{so can never get to } 5\sigma \text{ as } L \to \infty}$$

⇒ limits not just discovery, but use as measurment

$gg \rightarrow H \rightarrow \gamma \gamma$ at the LHC

Idea: rare decay might win because bkg is also EW, not QCD.

(recall BR($H \to \gamma \gamma$) $\sim \mathcal{O}(0.2)\%$ for light $110 \lesssim M_H \lesssim 140$ GeV)

- \rightarrow might not be discovery, but gets mass to 1%
- · requires very good jet (fake photon) rejection $j\gamma$, jj bkgs non-trivial detector sim. estimates still range over a factor 2

Still at "low" M_H , what about $H \to \tau^+ \tau^-$?

But taus aren't observed directly, they decay immediately:

$$\mathsf{BR}(\tau \to \ell \nu_{\ell} \nu_{\tau}) = 35\% \quad \to \mathsf{isolated} \; e \; \mathsf{or} \; \mu \; (\epsilon_{\ell} \sim 90\%)$$

$$\mathsf{BR}(\tau \to h \; \nu_{\ell}) = 50\% \quad \to \text{``1 propg'' badronia} \; (\epsilon_{\ell} \sim 95\%)$$

$$BR(\tau \to h_1 \nu_\tau) = 50\% \quad \to \text{``1-prong''} hadronic (\epsilon_h \sim 25\%)$$

$$BR(\tau \to h_3 \nu_\tau) = 15\% \to \text{``3-prong''} hadronic (throw away)$$

Problem! Lots of missing energy - so how to reconstruct $m_{ au^+ au^-}$?

Magic reconstruction technique:

- 1. assume collinear τ decays: x_+ , x_- are unknowns
- 2. measure p_T : knowns are x, y components
- 3. write momentum conservation matrix and solve for x_{\pm}
- 4. calculate pair invariant mass: $m_{ au au}^2 = \frac{m_{\ell\ell}^2}{x_+x_-} + 2m_{ au au}^2$

Important note: $\tau^+\tau^-$ must not be back-to-back!

▶ doesn't work then for $gg \to H \to \tau^+\tau^-$

 \Rightarrow what about WBF?

So what is this WBF process anyway?

An incoming pair of quarks emit a pair of gauge bosons, which fuse:

 \blacktriangleright quarks get scattered far-forward/backward into detector as jets Why? Recall W propagator $\frac{1}{Q^2-M^2}$:

minimal suppression for small Q^2 , which is always spacelike for small Q^2 , $Q^2=(p_f-p_i)^2\approx E_q^2(1-x)\theta^2$, x small

Sample "tagging jet" distributions against top quark background:

→ QCD processes look different

...back to WBF $H \rightarrow \tau^+ \tau^-$

 \cdot tau channels to use are $\ell^{\pm}h$ and $\ell^{+}\ell^{-}$ (need a lepton for trigger)

0.0

What are the backgrounds? (take $\ell^+\ell'^-$ as example)

ightarrow anything which gives two forward jets, p_T and two leptons

EW $Zjj, Z \rightarrow \tau^+\tau^-$ QCD $Zjj, Z \rightarrow \tau^+\tau^-$

QCD $t\bar{t}$ +jets $(t\bar{t},t\bar{t}j,t\bar{t}jj)$

 $\mathsf{EW} \quad WWjj$

QCD WWjj

QCD $b\bar{b}jj$

Reducible bkgs don't look like taus \rightarrow Zjj dominates - mostly QCD \downarrow

 \rightarrow ATLAS & CMS say: WBF $H \rightarrow \tau^+\tau^-$ works *extremely* well, better than parton-level predictions

- ▶ light Higgs easy to observe with 30 fb $^{-1}$ [joint ATLAS/CMS study 2003]
- · works for $110 \lesssim M_H \lesssim 150~{\rm GeV}$ (100 fb⁻¹)

WBF $H \rightarrow \tau^+ \tau^-$ in more detail

Major issue is missing transverse momentum resolution (detector):

Perform constrained fit to both p-1mm] M_Z and M_H , calculate $\Delta\chi^2$ to determine better consistency with

- → recovers a lot of lost signal
- \rightarrow enhances S/B by factor 4
- + neural net attack on dist'bns, etc.

MissingET with Z Mass Constraint

What if the Higgs is slightly heavier? (say, $M_H \gtrsim 140~{\rm GeV}$)

```
gg \to H \to \gamma \gamma loses steam, WBF H \to \tau^+ \tau^- gets harder, H \to b \bar b is totally impossible...
```

 \blacktriangleright as at Tevatron, look to $H \to W^+W^-, ZZ$ decays

What if the Higgs is slightly heavier? (say, $M_H \gtrsim 140~{\rm GeV}$)

 $gg \to H \to \gamma \gamma$ loses steam, WBF $H \to \tau^+ \tau^-$ gets harder, $H \to b\bar{b}$ is totally impossible...

 \blacktriangleright as at Tevatron, look to $H \to W^+W^-, ZZ$ decays

For W^+W^- , recall angular correlation:

What if the Higgs is slightly heavier? (say, $M_H \gtrsim 140~{\rm GeV}$)

 $gg \to H \to \gamma \gamma$ loses steam, WBF $H \to \tau^+ \tau^-$ gets harder, $H \to b \bar b$ is totally impossible...

 \blacktriangleright as at Tevatron, look to $H \to W^+W^-, ZZ$ decays

For W^+W^- , recall angular correlation:

In addition, realize that for $H\to W^+W^-$ at threshold, the W's are at rest, so $m_{\ell\ell}=m_{\nu\nu}$. Construct transverse mass!

Transverse energies:

$$E_T(e\mu) = \sqrt{\vec{p}_T^2(\ell\ell) + m_{\ell\ell}^2} \quad \& \quad \not\!\!E_T = \sqrt{\vec{p}_T^2 + m_{\ell\ell}^2}$$

Transverse mass:

$$M_T(W^+W^-) = \sqrt{(E_T + E_T(\ell\ell))^2 - (\vec{p}_T(\ell\ell) + \vec{p}_T)^2}$$

→ works well even away from threshold

ATLAS/CMS joint simulation results for WBF $H \rightarrow W^+W^-$:

· detector effects smear things out, but Jacobian peak there

Works even for $M_H = 120$ GeV:

channel	signal (fb)		background (fb)					
	VV	gg	$t\bar{t} + Wt$	W^+W^- +jets		$\gamma^*/Z + jets$		total
				EW	QCD	EW	QCD	
$e\mu$	0.52	0.05	0.58	0.27	0.03	0.02	0.05	0.95
$ee/\mu\mu$	0.50	0.04	0.58	0.30	0.03	0.03	0.39	1.33

• for low M_H , serious background uncertainties remain: mostly $t\bar{t}j$ off-shell \triangleright needs much more study, and $t\bar{t}j$ @ NLO (on the way, thanks LoopVerein!)

Ok, WBF turns out to be fantastic. How well do we understand it?

Open issues:

- 1. Minijet veto (QCD radiation effects due to color flow) at primitive stage but measureable in data (cf. WBF Zjj).
- 2. Better understanding of $t\bar{t}$ +jets: off-shell effects, normalization and shape changes @ NLO.
- 3. Contamination from GF signal + jets: $gg \rightarrow Hgg$. Partially understood.
- 4. Nitty-gritty experimental issues, e.g. tagging forward jets at high lumi w/ underlying event, min. bias, etc.

...?

QCD can also give a central Higgs plus forward/backward jets:

ightharpoonup +1/3 rate \uparrow w/ WBF cuts @ low M_H ! (no MJV) but different ϕ_{jj}

rate uncertain to more than a factor 2

Big surprise in 2002: $t\bar{t}H, H \rightarrow W^+W^-$ is viable!

- \cdot very complicated final state: $4Wbb \rightarrow$ multipleptons
- · best channels: same-sign dilepton, trilepton
- · LOTS of nasty, never-before-calculated backgrounds:

$$t\bar{t}Z/\gamma^*(jj)$$
, $t\bar{t}Wjj$, $t\bar{t}WW$, $t\bar{t}t\bar{t}$

- \rightarrow lots of diagrams, large QCD uncertainties (espec. on $t \bar{t} V j j$)
- \blacktriangleright if HWW coupling known, provides only directly Y_t measurement

ATLAS: $t\bar{t}H, H \to W^+W^-$ works over large M_H range: $\sigma \cdot$ BR \sim constant:

Other misc. SM channels ATLAS & CMS are working on:

- $gg \to H \to ZZ \to 4\ell$ the "golden channel" (excellent δm)
- $\cdot t\bar{t}H, H \rightarrow \gamma\gamma$
- $\cdot gg \to H \to W^+W^- \to \ell \nu jj$ (higher mass)
- $gg \to H \to ZZ \to \ell^+\ell^- jj$ (higher mass)
- · WBF $H \to W^+W^- \to \ell \nu j j$ (higher mass)
- · WBF $H \to ZZ \to \ell^+\ell^- jj, \ \ell^+\ell^- b\bar{b}$
- $\cdot \text{ WBF } H \rightarrow \gamma \gamma$
- · WBF $H \to \tau^+ \tau^- \to h_1 h_1 j j$ (all-hadronic; new trigger)

•

Point: maximize data sample in multiple channels

→ allows for more Higgs measurements

...speaking of which...

LHC (ATLAS) SM Higgs discovery summary

- WBF channels most important for discovery (and still not optimal)
 - bad: does not include tagging jet degradation at high lumi
 - good: does not include advances in $H o au^+ au^-$
 - good: does not include minijet veto at all
 - good: does not include additional W,Z, au decay channels
- · entire mass range covered by multiple channels
- · for most range, data contain discovery before detectors understood

SUMMARY PART 1

- The Higgs can't be produced directly, since it couples ∞ mass; must be produced in associated with or by something massive (W, Z, t, ...).
- Higgs partial decay widths to fermions grow like M_H ; to gauge bosons grow as M_H^3 , so these dominate at large M_H .
- LEP didn't find the SM Higgs, Tev2 has a very slim chance.
- The premier production channel at LHC is WBF, due to its very good S/B ratio (generally $\gg 1/1$).
- The worst Higgs backgrounds come from QCD.
 Reality check: shape uncertainties can destroy good ideas.
- LHC can discover a SM Higgs of any mass within a few years.
 (We did not discuss heavy Higgs searches, which are a different beast.)
- Clever Higgs-hunting requires careful thought about kinematics.